1 minute read

An array is a collection of items stored at contiguous memory locations. The idea is to store multiple items of the same type together. This makes it easier to calculate the position of each element by simply adding an offset to a base value, i.e., the memory location of the first element of the array (generally denoted by the name of the array). The base value is index 0 and the difference between the two indexes is the offset.

For simplicity, we can think of an array as a fleet of stairs where on each step is placed a value (let’s say one of your friends). Here, you can identify the location of any of your friends by simply knowing the count of the step they are on.

Basic Operations

These are the basic operations supported by an array.

  • Traverse − print all the array elements one by one.
  • Insertion − Adds an element at the given index.
  • Deletion − Deletes an element at the given index.
  • Search − Searches an element using the given index or by the value.
  • Update − Updates an element at the given index.

Applications

Arrays are used to implement mathematical vectors and matrices, as well as other kinds of rectangular tables. Many databases, small and large, consist of (or include) one-dimensional arrays whose elements are records.

Arrays are used to implement other data structures, such as lists, heaps, hash tables, deques, queues, stacks, strings, and VLists. Array-based implementations of other data structures are frequently simple and space-efficient (implicit data structures), requiring little space overhead, but may have poor space complexity, particularly when modified, compared to tree-based data structures (compare a sorted array to a search tree).

One or more large arrays are sometimes used to emulate in-program dynamic memory allocation, particularly memory pool allocation. Historically, this has sometimes been the only way to allocate “dynamic memory” portably.

Arrays can be used to determine partial or complete control flow in programs, as a compact alternative to (otherwise repetitive) multiple IF statements. They are known in this context as control tables and are used in conjunction with a purpose built interpreter whose control flow is altered according to values contained in the array. The array may contain subroutine pointers (or relative subroutine numbers that can be acted upon by SWITCH statements) that direct the path of the execution.